Stimulation of cellular longevity using crispr-cas9 in aging-associated genes

Authors

DOI:

https://doi.org/10.59471/ijhsc202498

Keywords:

Cell senescence, cell longevity, KLOTHO, FOXO, genes , Telomers, CRISPR-CAS9

Abstract

Cellular senescence is a natural process of all living organisms. The genetic bases of this process have allowed the recognition of genes whose expression has been related to longevity and cell aging. The genes KLOTHO, FOXO, and those associated with telomere maintenance are three examples of these. The development of gene editing techniques is being directed at genes of biomedical interest such as those mentioned above. This literature review presents discoveries made on the genetic manipulation of the KLOTHO, FOXO and genes associated with telomere maintenance using the CRISPR-CAS9 tool. As a result, it is reported that the reduction of the expression of these genes has resulted in the increase of processes that lead to rapid aging. On the contrary, its overexpression increases the maintenance of the chemical and biological balance in organisms both in vivo and in vitro. The development of the precision of advanced gene manipulation techniques seeks not only the study of new biochemical pathways but also possible applications in medicine focused on supporting the well-being of living organisms.

References

Lau C-H, Suh Y. Genome and epigenome editing in mechanistic studies of human aging and aging-related disease. Gerontology. 2017;63(2):103-17.

Petr MA, Tulika T, Carmona-Marin LM, Scheibye-Knudsen M. Protecting the Aging Genome. Trends Cell Biol. 2020;30(2):117-32.

Link W. Introduction to FOXO Biology. Methods Mol Biol. 2019;1890:1-9.

Martins R, Lithgow GJ, Link W. Long live FOXO: unraveling the role of FOXO proteins in aging and longevity. Aging Cell. 2016;15(2):196-207.

Sutphin GL, Korstanje R. Chapter 1 - Longevity as a Complex Genetic Trait. In: Kaeberlein MR, Martin GM, editors. Handbook of the Biology of Aging (Eighth Edition). San Diego: Academic Press; 2016. p. 3-54.

Booth LN, Brunet A. The Aging Epigenome. Mol Cell. 2016;62(5):728-44.

Sun X, Chen WD, Wang YD. DAF-16/FOXO Transcription Factor in Aging and Longevity. Front Pharmacol. 2017;8:548.

Miano JM, Long X. CRISPR-tagging mice in aging research. Aging (Albany NY). 2018;10(9):2226-7.

Abraham C, Mullen P, Tucker-Zhou T, Chen C, Zeldich E. Klotho is a neuroprotective and cognition-enhancing protein. Vitamins & Hormones. 101: Elsevier; 2016. p. 215-38.

Cheikhi A, Barchowsky A, Sahu A, Shinde SN, Pius A, Clemens ZJ, et al. Klotho: An Elephant in Aging Research. J Gerontol A Biol Sci Med Sci. 2019;74(7):1031-42.

Chen CD, Zeldich E, Li Y, Yuste A, Abraham CR. Activation of the Anti-Aging and Cognition-Enhancing Gene Klotho by CRISPR-dCas9 Transcriptional Effector Complex. J Mol Neurosci. 2018;64(2):175-84.

Murtaza G, Khan AK, Rashid R, Muneer S, Hasan SMF, Chen J. FOXO Transcriptional Factors and Long-Term Living. Oxid Med Cell Longev. 2017;2017:3494289.

Brane AC, Tollefsbol TO. Targeting Telomeres and Telomerase: Studies in Aging and Disease Utilizing CRISPR/Cas9 Technology. Cells. 2019;8(2).

Kim H, Ham S, Jo M, Lee GH, Lee YS, Shin JH, et al. CRISPR-Cas9 Mediated Telomere Removal Leads to Mitochondrial Stress and Protein Aggregation. Int J Mol Sci. 2017;18(10).

Wu RA, Upton HE, Vogan JM, Collins K. Telomerase Mechanism of Telomere Synthesis. Annu Rev Biochem. 2017;86:439-60.

Doudna JA, Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346(6213):1258096.

Boyle EA, Andreasson JOL, Chircus LM, Sternberg SH, Wu MJ, Guegler CK, et al. High-throughput biochemical profiling reveals sequence determinants of dCas9 off-target binding and unbinding. Proc Natl Acad Sci U S A. 2017;114(21):5461-6.

Richter F, Fonfara I, Gelfert R, Nack J, Charpentier E, Moglich A. Switchable Cas9. Curr Opin Biotechnol. 2017;48:119-26.

Acun A, Zorlutuna P. CRISPR/Cas9 edited hiPSC-based vascular tissues to model aging and disease-dependent impairment. Tissue Engineering Part A. 2019;25.

Montoliu L. Editando genes: recorta, pega y colorea: las maravillosas herramientas CRISPR: Next Door Publishers SL; 2019.

Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nature protocols. 2013;8(11):2281-308.

Barrangou R, Birmingham A, Wiemann S, Beijersbergen RL, Hornung V, Smith Anja vB. Advances in CRISPR-Cas9 genome engineering: lessons learned from RNA interference. Nucleic Acids Research. 2015;43(7):3407-19.

Larson MH, Gilbert LA, Wang X, Lim WA, Weissman JS, Qi LS. CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nature protocols. 2013;8(11):2180-96.

Bengtsson NE, Hall JK, Odom GL, Phelps MP, Andrus CR, Hawkins RD, et al. Muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates pathophysiology in a mouse model for Duchenne muscular dystrophy. Nature communications. 2017;8(1):1-10.

Safari F, Farajnia S, Arya M, Zarredar H, Nasrolahi A. CRISPR and personalized Treg therapy: new insights into the treatment of rheumatoid arthritis. Immunopharmacology and immunotoxicology. 2018;40(3):201-11.

Wang H-X, Li M, Lee CM, Chakraborty S, Kim H-W, Bao G, et al. CRISPR/Cas9-based genome editing for disease modeling and therapy: challenges and opportunities for nonviral delivery. Chemical reviews. 2017;117(15):9874-906.

Liu J, Zhou Y, Qi X, Chen J, Chen W, Qiu G, et al. CRISPR/Cas9 in zebrafish: an efficient combination for human genetic diseases modeling. Human genetics. 2017;136(1):1-12.

Aitken RJ. Reactive oxygen species as mediators of sperm capacitation and pathological damage. Molecular reproduction and development. 2017;84(10):1039-52.

Dutta EH, Behnia F, Boldogh I, Saade GR, Taylor BD, Kacerovský M, et al. Oxidative stress damage-associated molecular signaling pathways differentiate spontaneous preterm birth and preterm premature rupture of the membranes. Mhr: Basic science of reproductive medicine. 2016;22(2):143-57.

Quarles LD. FGF-23 and α-Klotho Co-Dependent and Independent Functions. Current opinion in nephrology and hypertension. 2019;28(1):16.

Tia N, Singh AK, Pandey P, Azad CS, Chaudhary P, Gambhir IS. Role of Forkhead Box O (FOXO) transcription factor in aging and diseases. Gene. 2018;648:97-105.

Artoni F, Kreipke RE, Palmeira O, Dixon C, Goldberg Z, Ruohola-Baker H. Loss of foxo rescues stem cell aging in Drosophila germ line. Elife. 2017;6:e27842.

Østhus IBØ, Sgura A, Berardinelli F, Vatten Alsnes I, Brønstad E, Rehn T, et al. La Longitud de los Telómeros y el Ejercicio de Resistencia de Larga Duración:¿ El Entrenamiento Afecta la Edad Biológica? Un Estudio Piloto-Ciencias del Ejercicio. PubliCE. 2016.

Shay JW. Telomeres and aging. Current Opinion in Cell Biology. 2018;52:1-7.

Wang S, Min Z, Ji Q, Geng L, Su Y, Liu Z, et al. Rescue of premature aging defects in Cockayne syndrome stem cells by CRISPR/Cas9-mediated gene correction. Protein & cell. 2020;11(1):1-22.

Shih G. Using CRISPR/dCas9 to Dissect the Role of Ribosomal DNA in Cellular Growth and Aging in Saccharomyces cerevisiae: University of California–San Diego; 2018.

Caobi A, Dutta RK, Garbinski LD, Esteban-Lopez M, Ceyhan Y, Andre M, et al. The Impact of CRISPR-Cas9 on Age-related Disorders: From Pathology to Therapy. Aging and disease. 2020:0.

Ilmer M, Berger M. Avatars to personalized medicine: of mice and men. Hepatobiliary Surg Nutr. 2017;6(5):347-9.

Downloads

Published

2024-07-22

Issue

Section

Original

How to Cite

1.
Latorre Barragán MF, García Cárdenas FR, Culqui Sánchez MV. Stimulation of cellular longevity using crispr-cas9 in aging-associated genes. Interamerican Journal of Health Sciences [Internet]. 2024 Jul. 22 [cited 2025 Jan. 18];4:98. Available from: https://ijhsc.uai.edu.ar/index.php/ijhsc/article/view/98