A specific reagent to study trypanosomatids respiration through polyprenyl diphosphate synthases inhibition: 1-[(n-oct-1-ylamino) ethyl] 1,1-bisphosphonic acid.
DOI:
https://doi.org/10.59471/202324Keywords:
Trypanosoma cruzi, Trypanosoma brucei, Leishmania, lanesyl diphosphate synthase, ubiquinone, inhibitor, bisphosphonate, EC50, LC50Abstract
Background: Ubiquinone or Coenzyme Q (CoQ) is a molecule performing an essential function as an electron carrier in the respiratory chain. Besides, it functions as a proton and electron acceptor and as an antioxidant. It is composed of a benzoquinone ring and an isoprenoid chain, the last one being synthesized by a polyprenil diphosphate synthase. The inhibition of the Trypanosoma cruzi enzyme by 1-[(n-oct-1-ylamino) ethyl] 1,1-bisphosphonic acid (OBA) is lethal, as well as the interference of the homologous enzyme in T. brucei brucei. We now studied the OBA sensitivities of the different forms of human pathogenic trypanosomatids.
References
Wang Y, Hekimi S. Molecular genetics of ubiquinone biosynthesis in animals. Crit Rev Biochem Mol Biol. 2013;48(1):69-88.
Fontaine E, Ichas F, Bernardi P. A ubiquinone-binding site regulates the mitochondrial permeability transition pore. J Biol Chem. 1998;273:25734–40.
Bustos PL, Perrone AE, Milduberger NA, Bua J. Mitochondrial permeability transition in protozoan parasites: what we learned from Trypanosoma cruzi. Cell Death Dis. 2017 Sep 21;8(9):e3057.
Kawamukai M. Biosynthesis and applications of prenylquinones. Biosci Biotechnol Biochem. 2018;82(6):963-77.
Crane FL. Biochemical functions of coenzyme Q10. J Am Coll Nutr. 2001;20:591–8.
Kawamukai M. Biosynthesis of coenzyme Q in eukaryotes. Biosci Biotechnol Biochem. 2016;80(1):23-33.
Allan CM, Awad AM, Johnson JS, Shirasaki DI, Wang C, Blaby-Haas CE, et al. Identification of Coq11, a new coenzyme Q biosynthetic protein in the CoQ-synthome in Saccharomyces cerevisiae. J Biol Chem. 2015;290(12):7517-34.
Wang KC, Ohnuma S. Isoprenyl diphosphate synthases. Biochim Biophys Acta 2000;1529 (1-3):33-48.
Clarkson AB, Bienen EJ, Pollakis G, Grady RW. Respiration of bloodstream forms of the parasite Trypanosoma brucei brucei is dependent on a plant-like alternative oxidase. J Biol Chem. 1989;264:17770–6.
Löw P, Dallner G, Mayor S, Cohen S, Chait BT, Menon AK. The mevalonate pathway in the bloodstream form of Trypanosoma brucei. Identification of dolichols containing 11 and 12 isoprene residues. J Biol Chem. 1991;266(29):19250-7.
Ferella M, Montalvetti A, Rohloff P, Miranda K, Fang J, Reina S, et al. A solanesyl-diphosphate synthase localizes in glycosomes of Trypanosoma cruzi. J Biol Chem 2006;281:39339-48.
Szajnman SH, García Liñares GE, Li ZH, Jiang C, Galizzi M, Bontempi EJ, et al. Synthesis and biological evaluation of 2-alkylaminoethyl-1,1-bisphosphonic acids against Trypanosoma cruzi and Toxoplasma gondii targeting farnesyl diphosphate synthase. Bioorg Med Chem 2008;16:3283–90.
Lai DH, Bontempi EJ, Lukeš J. Trypanosoma brucei solanesyl-diphosphate synthase localizes to the mitochondrion. Mol Biochem Parasitol. 2012;183(2):189-92.
Lai DH, Poropat E, Pravia C, Landoni M, Couto AS, Rojo FG, et al. Solanesyl diphosphate synthase, an enzyme of the ubiquinone synthetic pathway, is required throughout the life cycle of Trypanosoma brucei. Euk Cell 2014;13(2):320-8.
Biswas S, Barrett MP, Rivière L, Bringaud F. Participation of chlorobiumquinone in the transplasma membrane electron transport system of Leishmania donovani promastigote: effect of near-ultraviolet light on the redox reaction of plasma membrane. Bioch Bioph Acta. 2008;1780(2):116-27.
Rassam MB, Shanshal M, Gargees GS. Isolation and identification of coenzyme Q from Leishmania donovani. Mol Biochem Parasitol. 1988;29(1):61-4.
Ellis JE, Setchell KD, Kaneshiro ES. Detection of ubiquinone in parasitic and free-living protozoa, including species devoid of mitochondria. Mol Biochem Parasitol. 1994;65(2):213-24.
Arruda DC, D'Alexandri FL, Katzin AM, Uliana SR. Leishmania amazonensis: biosynthesis of polyprenols of 9 isoprene units by amastigotes. Exp Parasitol 2008;118(4):624-8.
Ranganathan G, Mukkada AJ. Ubiquinone biosynthesis in Leishmania major promastigotes. Int J Parasitol. 1995;25(3):279-84.
Besteiro S, Barrett MP, Rivière L, Bringaud F. Energy generation in insect stages of Trypanosoma brucei: metabolism in flux. Trends Parasitol. 2005;21(4):185-91.
Grant PT, Fulton JD. The catabolism of glucose by strains of Trypanosoma rhodesiense. Biochem J. 1957;66:242-50.
Brohn FH, Clarkson AB. Jr. Quantitative effects of salycylhydroxamic acid and glycerol on Trypanosoma brucei glycolysis in vitro and in vivo. Acta Trop. 1978;35:23-33.
Ryley JF. Studies on the metabolism of the Protozoa. 7. Comparative carbohydrate metabolism of eleven species of trypanosome. Biochem J. 1956;62(2):215-22.
Helfert S, Estévez AM, Bakker B, Michels P, Clayton C. Roles of triosephosphate isomerase and aerobic metabolism in Trypanosoma brucei. Biochem J. 2001;357:117-25.
Cazzulo JJ, Arauzo S, Franke de Cazzulo BM, Cannata JJ. On the production of glycerol and L-alanine during the aerobic fermentation of glucose by trypanosomatids. FEMS Microbiol Lett. 1988;51:187-92.
Shah-Simpson S, Lentini G, Dumoulin PC, Burleigh BA. Modulation of host central carbon metabolism and in situ glucose uptake by intracellular Trypanosoma cruzi amastigotes. PLoS Pathog. 2017;13(11):e1006747.
Darling TN, Balber AE, Blum JJ. A comparative study of D-lactate, L-lactate and glycerol formation by four species of Leishmania and by Trypanosoma lewisi and Trypanosoma brucei gambiense. Mol Biochem Parasitol. 1988;30(3):253-7.
Irsch T, Krauth-Siegel RL. Glyoxalase II of African trypanosomes is trypanothione-dependent. J Biol Chem. 2004;279(21):22209-17.
Saunders EC, Ng WW, Kloehn J, Chambers JM, Ng M, McConville MJ. Induction of a stringent metabolic response in intracellular stages of Leishmania mexicana leads to increased dependence on mitochondrial metabolism. PLoS Pathog. 2014;10(1):e1003888.
Rainey PM, MacKenzie NE. A carbon-13 nuclear magnetic resonance analysis of the products of glucose metabolism in Leishmania pifanoi amastigotes and promastigotes. Mol Biochem Parasitol. 1991;45(2):307-15.
Naderer T, Ellis MA, Sernee MF, De Souza DP, Curtis J, Handman E, et al. Virulence of Leishmania major in macrophages and mice requires the gluconeogenic enzyme fructose-1,6-bisphosphatase. Proc Natl Acad Sci USA. 2006;103:5502-7.
McConville MJ, Saunders EC, Kloehn J, Dagley MJ. Leishmania carbon metabolism in the macrophage phagolysosome- feast or famine? F1000Res. 2015;4(F1000 Faculty Rev):938.
Rosenzweig D, Smith D, Opperdoes F, Stern S, Olafson RW, Zilberstein D. Retooling Leishmania metabolism: from sand fly gut to human macrophage. FASEB J. 2008;22:590-602.
Osorio Y, Travi BL, Renslo AR, Peniche AG, Melby PC. Identification of Small Molecule Lead Compounds for Visceral Leishmaniasis Using a Novel ExVivo Splenic Explant Model System. PLoS Negl Trop Dis. 2011;5(2):e962.
Roy G, Dumas C, Sereno D, Wu Y, Singh AK, Tremblay MJ, et al. Episomal and stable expression of the luciferase reporter gene for quantifying Leishmania spp. infections in macrophages and in animal models. Mol Biochem Parasitol 2000;110:195–206.
Engel JC, Ang KK, Chen S, Arkin MR, McKerrow JH, Doyle PS. Image-based high-throughput drug screening targeting the intracellular stage of Trypanosoma cruzi, the agent of Chagas’ disease. Antimicrob Agents Chemother. 2010;54(8):3326-34.
Zingales B, Pereira ME, Oliveira RP, Almeida KA, Umezawa ES, Souto RP, et al. Trypanosoma cruzi genome project: biological characteristics and molecular typing of clone CL Brener. Acta Tropica. 1997;68:159–73.
Grosso NL, Búa J, Perrone AE, Gonzalez MN, Bustos PL, Postan M, et al. Trypanosoma cruzi: biological characterization of a isolate from an endemic area and its susceptibility to conventional drugs. Exp Parasitol. 2010;126(2):239-44.
Aslett M, Aurrecoechea C, Berriman M, Brestelli J, Brunk BP, Carrington M, et al. TriTrypDB: a functional genomic resource for the Trypanosomatidae. Nucleic Acids Res. 2010;38 (Release 40. 15 Oct 2018):D457-62.
Madeira F, Park YM, Lee J, Buso N, Gur T, Madhusoodanan N, et al. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res. 2019;47(W1):W636-41.
Koyama T. Molecular analysis of prenyl chain elongating enzymes. Biosci Biotechnol Biochem. 1999;63:1671–6.
Rodríguez JB, Falcone BN, Szajnman SH. Approaches for Designing new Potent Inhibitors of Farnesyl Pyrophosphate Synthase. Expert Opin Drug Discov. 2016;11(3):307-20.
Wolf K, Dormeyer M. Information-based methods in the development of antiparasitic drugs. Parasitol Res. 2003;90 Suppl 2:S91-6.
Bringaud F, Plazolles N, Pineda E, Asencio C, Villafraz O, Millerioux Y, et al. (2021) Glycerol, a possible new player in the biology of trypanosomes. PLoS Pathog 17(12): e1010035.
Minagawa N, Yabu Y, Kita K, Nagai K, Ohta N, Meguro K, et al. An antibiotic, ascofuranone, specifically inhibits respiration and in vitro growth of long slender bloodstream forms of Trypanosoma brucei brucei. Mol Biochem Parasitol. 1997;84:271-80.
Pineda E, Thonnus M, Mazet M, Mourier A, Cahoreau E, Kulyk H, et al. Glycerol supports growth of the Trypanosoma brucei bloodstream forms in the absence of glucose: Analysis of metabolic adaptations on glycerol-rich conditions. PLoS Pathog. 2018;14(11):e1007412.
Zingales, B., 2018. Trypanosoma cruzi genetic diversity: something new for something
known about Chagas disease manifestations, serodiagnosis and drug sensitivity. Acta
Trop. 184, 38–52.
Keegan F, Blum JJ. Effects of oxygen concentration on the intermediary metabolism of Leishmania major promastigotes. Mol Biochem Parasitol. 1990 Mar;39(2):235-45.
Metabolic stringent response in intracellular stages of Leishmania. Saunders EC, Sernee MF, Ralton JE, McConville MJ. Curr Opin Microbiol. 2021 Oct;63:126-32.
Zilberstein D, Dwyer DM. Protonmotive force-driven active transport of D-glucose and L-proline in the protozoan parasite Leishmania donovani. Proc Natl Acad Sci USA. 1985;82(6):1716-20.
Glaser TA, Utz GL, Mukkada AJ. The plasma membrane electrical gradient (membrane potential) in Leishmania donovani promastigotes and amastigotes. Mol Biochem Parasitol. 1992;51(1):9-15.
Castro R, Scott K, Jordan T, Evans B, Craig J, Peters EL, et al. The ultrastructure of the parasitophorous vacuole formed by Leishmania major. J Parasitol. 2006;92(6):1162-70.
Docampo R. The origin and evolution of the acidocalcisome and its interactions with other organelles. Mol Biochem Parasitol. 2016;209(1-2):3-9.
Zhang K, Hsu FF, Scott DA, Docampo R, Turk J, Beverley SM. Leishmania salvage and remodelling of host sphingolipids in amastigote survival and acidocalcisome biogenesis. Mol Microbiol. 2005;55(5):1566-78.
Miranda K, Benchimol M, Docampo R, De Souza W. The fine structure of acidocalcisomes in Trypanosoma cruzi. Parasitol. Res. 2000;86:373-84.
Published
Issue
Section
License
Copyright (c) 2023 Octavio Fusco , Cristina Soraires, Alicia Hoffer, Alicia G. Fuchs, Alina Perrone, Patricia Garavaglia, Bruno Travi, Juan Carlos Engel, Laurence Lecordier, Laura Fichera, Cristina Maidana, Victoria Fragueiro Frías, Gabriela A. García, Jacqueline Bua, Sergio H. Szajnman, Juan Bautista Rodríguez, Romina Rebozzio, Mónica Esteva, Carlos Pravia , Benoît Vanhollebeke, Esteban Bontempi (Author)
This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.