The first report of the qnrB19 and aac(6´)-Ib-cr in isolates uropathogenic Escherichia coli ciprofloxacin-resistant in Ecuador
DOI:
https://doi.org/10.59471/ijhsc2024179Keywords:
qnrB, aac(6’)-Ib-cr, Escherichia coli , uropathogenic, ciprofloxacin, resistant, EcuadorAbstract
The present study was designed to determine the presence of plasmid mediated quinolone resistance (PMQR) in clinical isolates of uropathogenic Escherichia coli ciprofloxacin-resistant of inpatients and outpatients in Quito-Ecuador. From January to December 2011, in 156 non-duplicated isolates of uropathogenic E. coli (120 outpatients and 36 inpatients) were investigated ciprofloxacin resistance, of these, 50,6% (79/156) were resistant to ciprofloxacin [inpatients 75% (27/36) and outpatients 43,3% (52/120) (p=0,00167)]. Genetic analysis resulted in 54,4%(43/79) positive for aac(6´)-Ib-cr gene [(inpatients 44,2% (19/43) and outpatients 55,8% (24/43), (p=0,0002647)]; and 64,5% (51/79) positive for qnrB gene [(inpatients 41,1% (21/51) and outpatient 62,5%(30/51) (p=0,0005243)]; qnrB19 allele was present in 100% of the strains analyzed, while qnrA, qnrC, qnrD and qnrS genes were not detected. The co-expression of qnrB19 and aac(6´)-Ib-cr occurred in 36,7% (29/79) of the isolates, with high levels of resistance (MIC50 >32). The phylogenetic group analyses showed that 22,8% (18/79) of the strains belonged to phylogenetic group A; 15,2% (12/79) to group B1; 48,1% (38/79) to group B2 and 13,9% (11/79) to group D. This study is the first report of qnrB19 and aac(6′)-Ib-cr genes in Ecuador.
References
Guzmán Natalia, García-Perdomo Herney Andrés. Novedades en el diagnóstico y tratamiento de la infección de tracto urinario en adultos. Revista mexicana de urología. 2020; 80(1): e06. https://doi.org/10.48193/rmu.v80i1.546
Malpartida Ampudia MK. Infección del tracto urinario no complicada. Rev.méd.sinerg. [Internet]. 2020;5(3):e382. https://revistamedicasinergia.com/index.php/rms/article/view/382
Hernández A, Sánchez MB, Martínez JL. Quinolone resistance: much more than predicted. Front Microbiol. 2011;2(22):1-6. doi: 10.3389/fmicb.2011.00022.
Rodríguez-Martínez JM. Mechanisms of plasmid-mediated resistance to quinolones. Enferm Infecc Microbiol Clin 2005;23(1):25-31. DOI: 10.1157/13070406
Martínez-Martínez L, Pascual A, Jacoby GA. Quinolone resistance from a transferable plasmid. The Lancet. 1998;351 (9105): 797-9. doi: 10.1016/S0140-6736(97)07322-4.
García José, Martínez Dianny, Caña Luisa, González Diorelis, Rodríguez Lucy, Rodulfo Hectorina et al . Genes qnr en Enterobacteriaceae aisladas en un hospital de Venezuela. Rev. chil. infectol. [Internet]. 2018; 35(2):147-154. http://dx.doi.org/10.4067/s0716-10182018000200147
Robicsek A, Strahilevitz J, Jacoby GA, Macielag M, Abbanat D, Park CH, Bush K, Hooper DC. Fluoroquinolone-modifying enzyme: a new adaptation of a common aminoglycoside acetyltransferase. Nature Medicine. 2006;12(1):83-8. https://doi.org/10.1038/nm1347
Vetting MW, Park CH, Hegde SS, Jacoby GA, Hooper DC, Blanchard JS. Mechanistic and structural analysis of aminoglycoside N-acetyltransferase AAC(6')-Ib and its bifunctional, fluoroquinolone-active AAC(6')-Ib-cr variant. Biochemistry. 2008;47(37): 9825-35. DOI: 10.1021/bi800664x
Koneman EW, Allen SD, Janda WM, et al. 2005. Color Atlas and Textbook of Diagnostic Microbiology, 6th edn.. Philadelphia: Lippincott Williams & Wilkins.
Clinical Laboratory Standards Institute. 2015. Performance Standards for Antimicrobial Susceptibility Testing: Twenty-first Informational Supplement M100–S21. CLSI,Wayne, PA, USA.
Clermont O, Bonacorsi S, Bingen E. Rapid and simple determination of the Escherichia coli phylogenetic group. Appl Environ Microbiol. 2000;66(10):4555-8. DOI: 10.1128/AEM.66.10.4555-4558.2000
Cattoir V, Poirel L, Rotimi V, Soussy CJ, Nordmann P. Multiplex PCR for detection of plasmid-mediated quinolone resistance qnr genes in ESBL-producing enterobacterial isolates. J Antimicrob Chemother. 2007 Aug;60(2):394-7. DOI: 10.1093/jac/dkm204
Park CH, Robicsek A, Jacoby GA, Sahm D, Hooper DC. Prevalence in the United States of aac(6')-Ib-cr encoding a ciprofloxacin-modifying enzyme. Antimicrob Agents Chemother. 2006;50(11):3953-5. DOI: 10.1128/AAC.00915-06
Ribot EM, Fair MA, Gautom R, Cameron DN, Hunter SB, Swaminathan B, Barrett TJ. Standardization of pulsed-field gel electrophoresis protocols for the subtyping of Escherichia coli O157:H7, Salmonella, and Shigella for PulseNet. Foodborne Pathog Dis. 2006 Spring;3(1):59-67. DOI: 10.1089/fpd.2006.3.59
Sousa Ferreira, E. M. de, Barbosa de Sousa , G. ., Leite Barbosa, K. ., Sousa Monteles, K. de, & Silva Gomes, B. Os riscos que o uso indiscriminado de antibióticos pode ocasionar em crianças: uma revisão bibliográfica. RECIMA21 - Revista Científica Multidisciplinar. 2021; 2(11):e211901. https://doi.org/10.47820/recima21.v2i11.901
Golovliov K, León D, Silva P, Falcón N. Medicación sin prescripción veterinaria en animales de compañía en Lima, Perú. Rev Inv Vet Perú. 2021;32(5):e21343 http://dx.doi.org/10.15381/rivep.v32i5.21343
Arias Negrete MF, Véliz Castro TI. Bacterial resistance to ciprofloxacin and nitrofurantoin due to indiscriminate use in patients with urinary symptoms. Revista Científica Arbitrada Multidisciplinaria PENTACIENCIAS. 2023;5(3):435-450. DOI: https://doi.org/10.59169/pentaciencias.v5i3.561
Solís M.B, Romo S, Granja M, Sarasti JJ, Paz y Miño A & Zurita, J. Infección comunitaria del tracto urinario por Escherichia coli en la era de resistencia antibiótica en Ecuador. Metro Ciencia. 2022;30(1):37-48. https://doi.org/10.47464/MetroCiencia/vol30/1/2022/37-48
Ross J, Larco D, Colon O, Coalson J, Gaus D, Taylor K, Lee S. Evolución de la Resistencia a los antibióticos en una zona rural de Ecuador. Práctica Familiar Rural. 2020;5(1). DOI: https://doi.org/10.23936/pfr.v5i1.144
Montañez-Valverde RA, Montenegro-Idrogo JJ, Arenas-Significación FR, Vásquez-Alva R. Ciprofloxacin-resistant E. coli community-acquired upper urinary tract infection: associated characteristics in patients of a national hospital in Peru. Anales de la Facultad de Medicina. 2015;76(4):385-91. http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1025-55832015000500009&lng=es.
Vidoni GE, Pizarro NC, Giai M. Resistencia a ciprofloxacina en infecciones urinarias por Escherichia coli. Hig. Sanid. Ambient. 2020;20(1):1829-1834. Disponible en: https://saludpublica.ugr.es/investigacion/revista-electronica/contenido/2020.
Santos M, Mariotto L, Massitel IL, Rubim FM, Almeida JVFC, Carvalho EEN, Ferrant M. Uso de fluoroquinolonas en perros y gatos domésticos. Investigación, Sociedad y Desarrollo. 2021;10(9):e25110917858. DOI: https://doi.org/10.33448/rsd-v10i9.17858
López B, Calderón E, Olivar V, Parra I, Alcáza V, Castellanos M, et al. Susceptibilidad antimicrobiana de microorganismos causantes de infección de vías urinarias bajas en un hospital pediátrico. Bol Med Hosp Infant Mex 2014; 71 (6): 339-45. http://dx.doi.org/10.1016/j.bmhimx.2015.01.001
Álvarez-Hernández, Diego Abelardo, Garza-Mayén, Gilda Sofía, & Vázquez-López, Rosalno. Quinolonas: perspectivas actuales y mecanismos de resistencia. Revista chilena de infectología. 2015;32(5):499-504. http://dx.doi.org/10.4067/S0716-10182015000600002
Armas-Freire PI, Trueba G, Proaño-Bolaños C, Levy K, Zhang L, Marrs CF, Cevallos W, Eisenberg JN. Unexpected distribution of the fluoroquinolone-resistance gene qnrB in Escherichia coli isolates from different human and poultry origins in Ecuador. Int Microbiol. 2015;18(2):85-90. doi: 10.2436/20.1501.01.237.
Pallecchi L, Riccobono E, Sennati S, Mantella A, Bartalesi F, Trigoso C, Gotuzzo E, Bartoloni A, Rossolini GM. Characterization of small ColE-like plasmids mediating widespread dissemination of the qnrB19 gene in commensal enterobacteria. Antimicrob Agents Chemother. 2010 Feb;54(2):678-82. DOI: 10.1128/AAC.01160-09
Rincón G, Radice M, Sennati S, Pallecchi L, Rossolini M, Gutkind G, et al. Prevalence of plasmid-mediated quinolone resistance determinants among oxyiminocephalosporin-resistant Enterobacteriaceae in Argentina. Mem Inst Oswaldo Cruz. 2014; 7: 924-7. doi: 10.1590/0074-0276130084.
Carvajal B., E., Rueda G., E., Talavera R., M., Torres C., M., López V., D., & Vásquez R., M. C. Resistencia a antibióticos betalactámicos y quinolonas en Escherichia coli aislada de pollos broiler. Revista De Investigaciones Veterinarias Del Perú, 2021;32(2), e20012. https://doi.org/10.15381/rivep.v32i2.20012
Jouini A, Slama KB, Vinué L, Ruiz E, Saénz Y, Somalo S, et al. Detection ofUnrelated Escherichia Coli Strains Harboring Genes of CTX-M-15, OXA-1, and AAC(6')-Ib-Cr Enzymes in a Tunisian Hospital and Characterization of Their Integrons and Virulence Factors. Journal of Chemotherapy. 2010; 22(5): p. 318-23.
Yang H, Chen H, Yang Q, Chen M, Wang H. High Prevalence of Plasmid-Mediated Quinolone Resistance Genes qnr and aac(6')-Ib-cr in Clinical Isolates of Enterobacteriaceae from Nine Teaching Hospitals in China. Antimicrobial Agents Chemoter. 2008; 52(12): p. 4268-4273.
Frassson I, Cavallaro A, Bergo C, Richter S, Palú G. Prevalence of aac(6')-Ib-cr plasmid-mediated and Chromosome-Encoded fluoroquinolone resistance in Enterobacteriaceae in Italy. Gut Pathogens. 2011; 3(12).
Goudarzi M, FazeliMaryam. Quinolone Resistance Determinants qnr, qep, and aac(6’)-Ib-cr in Extended-Spectrum B-Lactamase producing Escherichia coli Isolated From Urinary Tract Infections in Tehran, Iran.. Shiraz E-Med J. 2017;18(5).
Elgorriaga E, Guggiana P, Dominguez M, Gonzales G, Mella S, Labarca J, et al. Prevalencia del determinante de resistencia plasmídica a quinolonas aac(6’)-Ib-cr en cepas de Escherichia coli y Klebsiella pneumoniae productoras de BLEE aisladas en diez hospitales de Chile. Enferm Infecc Microbiol Clin. 2012; 30(8): p. 466-68.
Saba Villarroel PM. Caracterización de los determinantes de resistencia aβ-Lactámicos y quinolonas de localización plasmídica en Enterobacterias. Tesis de Maestría. Buenos Aires: Universidad de Buenos Aires, Facultad de Farmacia y Bioquimica; 2014.
Rincon G. Genes de Resistencia a Quinolonas de Localizacion Plasmidica en Enterobacteriaceae. Tesis doctoral. Buenos Aires: Universidad de Buenos Aires, Facultad de Farmacia y Bioquimica; 2015.
Chiluisa-Guacho C, Escobar-Perez J, Dutra-Asensi M. First Detection of the CTXM-15 Producing Escherichia coli O25-ST131 Pandemic Clone in Ecuador. Pathogens. 2018; 7(2):42. https://doi.org/10.3390/pathogens7020042
Minarini L.A, Poirel L, Cattior V, Darini A.L and Nordmann P. Plasmidmediated quinolone resistance determinants among enterobacterial isolates from outpatients in Brazil. Journal of Antimicrobial Chemotherapy. 2008;62(3):474–8 DOI: 10.1093/jac/dkn237
Paiva MC, Amaral AM, Baratella IL. The first report of the qnrB19, qnrS1 and aac(6’)-Ib-cr genes in urinary isolates of ciprofloxacin-resistant Escherichia coli in Brazil. Mem Inst Oswaldo Cruz. 2012;107(5):687-9. DOI: 10.1590/s0074-02762012000500018.
Andres P, Lucero C, Soler-Bistué A, Guerriero L, Albornoz E, Tran T, Zorreguieta A; PMQR Group; Galas M, Corso A, Tolmasky ME, Petroni A. Differential distribution of plasmid-mediated quinolone resistance genes in clinical enterobacteria with unusual phenotypes of quinolone susceptibility from Argentina. Antimicrob Agents Chemother. 2013;57(6):2467-75. doi: 10.1128/AAC.01615-12.
Gal-Mor O, Finlay BB. Pathogenicity islands: a molecular toolbox for bacterial virulence. Cell Microbiol. 2006 Nov;8(11):1707-19. DOI: 10.1111/j.1462-5822.2006.00794.x
Published
Issue
Section
License
Copyright (c) 2024 Carlos Chiluisa Guacho , Nairovys Gómez Martínez , Elisabeth Germania Vilema Vizuete, Marise Dutra Asensi (Author)
This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.