Mechanisms of infection and immune evasion of Trichinella spiralis, a Literature Review

Authors

DOI:

https://doi.org/10.59471/ijhsc2024123

Keywords:

Trichinella spiralis, immune response, trichinosis, infection, host, inflammation

Abstract

Trichinosis begins when a person eats raw or undercooked meat that contains Trichinella larvae. Once inside the digestive tract, the larvae break free and break through the intestinal wall, entering the blood and lymphatic vessels. They then migrate through the bloodstream and spread to various tissues in the body, such as muscles, where they continue to develop.

Once the larvae reach the muscles, they develop into an immature stage called "infective muscle cells" or "coil cells." These cells are surrounded by a protective capsule, formed by the inflammatory reaction of the host. Within these capsules, the larvae evade the host's immune response and become highly resistant to destruction.

Trichinella is capable of evading and modulating the host's immune response. The larvae release molecules that can inhibit the activation of cells of the immune system and reduce the production of proinflammatory cytokines, which contributes to the persistence of the parasite in muscle tissue. The presence of the larvae encapsulated in the muscles can cause tissue damage, inflammation and muscle pain.

Trichinella pathogenicity mechanisms are also related to its ability to complete its life cycle. When an infected host dies, the larvae are released back into the muscles and can infect other carnivorous animals that eat their meat, thus closing the cycle

References

Richard D. Pearson. Triquinosis - Enfermedades infecciosas . 202AD;

Despommier DD. How Does Trichinella spiralis Make Itself at Home? Parasitol Today. 2018 Aug;14(8):318–23.

Ruvalcaba F, Quezada M, … DHI, 2021 undefined. Enfermedades transmitidas por alimentos causadas por parásitos. RevistasUazEduMx. 2020;14(2):151–5.

Carrasco Z, Renato I, Lozano C, Zúñiga Carrasco Av Tecnológico Mz R, del Carmen P, de Solidaridad M, et al. Enfermedades transmitidas por los alimentos: una mirada puntual para el personal de salud Foodborne diseases: a timely view for health personnel. Enfermedades Infecc y Microbiol. 2017;37(3):95–104.

Novoa Medina KE, Santillán Calles JL. Detección de Trichinella spp., utilizando tres técnicas diagnósticas en cerdos de traspatio faenados en la Empresa Pública Metropolitana de Rastro Quito. 2021;

Fossaroli MG. Revisión bibliográfica de los diferentes métodos de diagnóstico de laboratorio para Trichinellosis porcina . 2019;0–37.

Pozio E. The impact of globalization and climate change on Trichinella spp. epidemiology. Food Waterborne Parasitol. 2022 Jun;27.

Diaz JH, Warren RJ, Oster MJ. The Disease Ecology, Epidemiology, Clinical Manifestations, and Management of Trichinellosis Linked to Consumption of Wild Animal Meat. Wilderness Environ Med. 2020;31(2):235–44.

Ministerio de salud Argentina. Guía para la prevención y el control de la TRIQUINOSIS/ TRICHINELLOSIS. 2021;

Norman F, Antonio Pérez-Molina J, López-Vélez R. Enfermedades Emergentes. 2016;

Liu S, Pan J, Meng X, Zhu J, Zhou J, Zhu X. Trichinella spiralis infection decreases the diversity of the intestinal flora in the infected mouse. J Microbiol Immunol Infect. 2021;54(3):490–500.

Intendente S, Municipalidad D. Triquinosis, una sociedad en jaque. 1998;13–30.

Peña MSR. Trichinella. 2012;303–10.

Urbina W. Pontificia Universidad Católica del Ecuador. Economía. 2013. 1–41 p.

Paget J, Leidy J. Trichinellosis : un problema permanente en Argentina . Parte 1 Trichinellosis : a permanent problem in Argentina . Part 1. 2021;

Riva E, Steffan P, Fiel C. Trichinellosis: Aspectos múltiples de una zoonosis global. FAO Mejor del Control la Trichinellosis. 2007;9(Lm):94–109.

Ortega-Pierres MG. La caracterización de los antígenos de superficie del nematodo parásito Trichinella spiralis: estudio de su participación en los mecanismos de protección y su utilidad en el diagnóstico de la triquinosis. Gac Med Mex. 1995;131(1):2–12.

Petrovic J. Important biological characteristics of Trichinella genotypes. Vet Glas. 2019;73(2):100–7.

Garcia L. Universidad De Sevilla Facultad De Farmacia. 2017;p12.

Contreras M del C, Sandoval L, Salinas P, Saavedra T, Schenone H. Inmunodiagnóstico de la triquinosis humana. Boletín Chil Parasitol. 2001 Jul;56(3–4):47–53.

Chávez-Larrea MA, Dorny P, Moeller L, Benítez-Ortiz W, Barrionuevo-Samaniego M, Rodríguez-Hidalgo R, et al. Survey on porcine trichinellosis in Ecuador. Vet Parasitol. 2005;132(1-2 SPEC. ISS.):151–4.

Rodriguez B, Hernández B, Hernández K, Lema A, Llantuy M. Trichinella spiralis, un parásito subestimado en Ecuador Bradley. J Chem Inf Model. 2013;53(9):1689–99.

Sevilla UDE. Triquinelosis Y Su Situación Actual En Europa. 2021;

Moreno García MA, Maldonado Tapia CH, García Mayorga EA, Reveles Hernández RG, Muñoz Escobedo JJ. Fase intestinal de trichinella spiralis en modelo murino. Acta Biol Colomb. 2009;14(1):203–10.

Rawla P, Sharma S. Trichinella spiralis Infection. Textb Med Parasitol. 2023 May 22;161–161.

Zarlenga D, Thompson P, Pozio E. Trichinella species and genotypes. Res Vet Sci. 2020 Dec 1;133:289–96.

Gómez-Morales MÁ, Cherchi S, Ludovisi A. Serological testing for Trichinella infection in animals and man: Current status and opportunities for advancements. Food Waterborne Parasitol. 2022;27(December 2021).

Hao C, Wang W, Zhan B, Wang Z, Huang J, Sun X, et al. Trichinella spiralis Paramyosin Induces Colonic Regulatory T Cells to Mitigate Inflammatory Bowel Disease. Front Cell Dev Biol. 2021;9(July):1–18.

Sad N. Características biológicas importantes detriquinellagenotipos. 2019;73(2):100–7.

Wang N, Bai X, Tang B, Yang Y, Wang X, Zhu H, et al. Primary characterization of the immune response in pigs infected with Trichinella spiralis. Vet Res. 2020;51(1):1–14.

Yining C, Xu J, Wang X, Yang Y, Pang J, Wang X. Regulación de las células inmunitarias del huésped y producción de citoquinas inducida porTrichinella espiralisinfección Introducción Materiales y métodos. 2019;74.

Xi-meng S, Guo K, Hao CY, Zhan B, Huang J jing, Zhu X. Trichinella espiralisLos productos excretores-secretores estimulan la diferenciación de células T reguladoras del huésped mediante la activación de células dendríticas. 2019;1–19.

Jin QW, Zhang NZ, Li WH, Qin HT, Liu YJ, Ohiolei JA, et al. Trichinella spiralis Thioredoxin Peroxidase 2 Regulates Protective Th2 Immune Response in Mice by Directly Inducing Alternatively Activated Macrophages. Front Immunol. 2020;11(September):1–13.

Wang R, Lin L, Han Y, Li Z, Zhen J, Zhang Y, et al. Exosome-delivered miR-153 from Trichinella spiralis promotes apoptosis of intestinal epithelial cells by downregulating Bcl2. Vet Res. 2023;54(1):1–17.

Downloads

Published

2024-07-11

Issue

Section

Original

How to Cite

1.
Moya MMA, Carrera Aldaz GA, Poveda Paredes FX. Mechanisms of infection and immune evasion of Trichinella spiralis, a Literature Review. Interamerican Journal of Health Sciences [Internet]. 2024 Jul. 11 [cited 2024 Sep. 18];4:123. Available from: https://ijhsc.uai.edu.ar/index.php/ijhsc/article/view/123