Epigenetics in Periodontics

Authors

DOI:

https://doi.org/10.59471/ijhsc2024114

Keywords:

Epigenetics in Periodontitis, Periodontitis, Epigenetics

Abstract

Background: periodontitis is a pathology characterized by the destruction of dental support tissue, in its worst scenario it can cause the loss of the dental organ; Its etiological factor is periodontopathogenic bacteria, however, this is a multifactorial disease, that is, not only environmental factors are involved but also genetic factors that are responsible for modulating the progression of periodontal disease. Not all patients will have the same susceptibility to developing Periodontitis since basically this will depend on the immunity of the host and its genetic code. Objective: to present the epigenetic mechanisms that have been applied in the field of Periodontics in order that these studies lead to the discovery of new regulatory treatments that offer to be an alternative to control inflammation in Periodontitis, that is, based on the findings already exposed in the future it is estimated that they can be translated into clinical practice. Methods: this article has prepared a compilation and analysis of the literature using the database of Scopus, Pubmed, EBSCO and Cochrane. We included experimental trials, case-control studies, review studies and meta-analyses. Results: Several studies have been presented that facilitate the understanding of the epigenetic mechanisms involved in pathological processes, such as specific biomarkers for certain diseases and genes that regulate inflammatory processes; In addition, it was mentioned that there are inhibitory molecules that allow the modulation of the inflammatory process of the host

References

Lindhe J. PERIODONTOLOGIA CLINICA E IMPLANTOLOGIA ODONTOLOGICA. Sexta. Madrid: EDITORIAL MEDICA PANAMERICANA; 2016.

Martínez Martínez A, Llerena M, Peñaherrera M. Prevalencia de enfermedad periodontal y factores de riesgo asociados. Dominio las Ciencias. 2017;3(1):99–108.

Chen Z, Guo Z, Lin H, Tian Y, Zhang P, Chen H, et al. The feasibility of phage therapy for periodontitis. https://doi.org/102217/fmb-2020-0161 [Internet]. 2021 Jun 8 [cited 2022 Oct 3];16(9):649–56. Available from: https://www.futuremedicine.com/doi/10.2217/fmb-2020-0161

Haffajee AD, Uzel NG, Arguello EI, Torresyap G, Guerrero DM, Socransky SS. Clinical and microbiological changes associated with the use of combined antimicrobial therapies to treat “refractory” periodontitis. J Clin Periodontol [Internet]. 2004 Oct [cited 2022 Oct 3];31(10):869–77. Available from: https://pubmed.ncbi.nlm.nih.gov/15367191/

Pahl HL. Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene [Internet]. 1999 Nov 22 [cited 2022 Sep 27];18(49):6853–66. Available from: https://pubmed.ncbi.nlm.nih.gov/10602461/

Tonetti MS, Greenwell H, Kornman KS. Staging and grading of periodontitis: Framework and proposal of a new classification and case definition. J Clin Periodontol. 2018;45(January):S149–61.

Borrell LN, Papapanou PN. Analytical epidemiology of periodontitis. J Clin Periodontol. 2005;32(SUPPL. 6):132–58.

Genco R, Borgnakke W. Risk factors for periodontal disease. Periodontol 2000. 2013;62.

Covani U, Marconcini S, Giacomelli L, Sivozhelevov V, Barone A, Nicolini C. Bioinformatic prediction of leader genes in human periodontitis. J Periodontol [Internet]. 2008 Oct [cited 2022 Oct 5];79(10):1974–83. Available from: https://pubmed.ncbi.nlm.nih.gov/18834254/

National Center for Biotechnology Information. Proteína 2 unida al receptor del factor de crecimiento GRB2 [ Homo sapiens (humano)] [Internet]. NIH. 2023. p. 10. Available from: https://www.ncbi.nlm.nih.gov/gene/2885#gene-expression

Gilmore TD. Nuclear Factor Kappa B. Encycl Biol Chem Second Ed. 2013 Jan 1;302–5.

Afonina IS, Zhong Z, Karin M, Beyaert R. Limiting inflammation - The negative regulation of NF-B and the NLRP3 inflammasome. Nat Immunol. 2017;18(8):861–9.

Echeverri N, Mockus I. Factor Nuclear Κ B (Nf-Κ Κ B): Signalosoma Y Su Importancia En Enfermedades Inflamatorias Y Cáncer. RevFacMed. 2008;56(2):133–46.

Fliegauf M, Grimbacher B. Nuclear factor κB mutations in human subjects: The devil is in the details. J Allergy Clin Immunol [Internet]. 2018 Oct 1 [cited 2022 Sep 26];142(4):1062–5. Available from: https://pubmed.ncbi.nlm.nih.gov/30165054/

National Center for Biotechnology Information. Chr4: 102.5M-102.6M - Visor de datos del genoma - NCBI [Internet]. NIH. [cited 2022 Sep 30]. Available from: https://www.ncbi.nlm.nih.gov/genome/gdv/browser/genome/?id=GCF_000001405.40

NCBI. RefSeq: NCBI / Reference Sequence Database of the National Center for Biotechnology Information [Internet]. References sequences are provided for genomes, transcripts, and proteins. 2020 [cited 2022 Sep 30]. Available from: https://www.ncbi.nlm.nih.gov/refseq/

LOOK AT, FERRANDO A. Chromosomal Translocations in B-Cell Leukemias and Lymphomas. In: Molecular Biology of B Cells [Internet]. Elsevier; 2004 [cited 2022 Sep 27]. p. 349–64. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780120536412500241

Companioni O, Bonet C, García N, Ramírez-Lázaro MJ, Lario S, Mendoza J, et al. Genetic variation analysis in a follow-up study of gastric cancer precursor lesions confirms the association of MUC2 variants with the evolution of the lesions and identifies a significant association with NFKB1 and CD14. Int J Cancer. 2018;143(11):2777–86.

Marconcini S, Covani U, Barone A, Vittorio O, Curcio M, Barbuti S, et al. Real-Time Quantitative Polymerase Chain Reaction Analysis of Patients With Refractory Chronic Periodontitis. J Periodontol. 2011;82(7):1018–24.

Paredes Herrera ME, Cano Espinoza MJ. Relación del gen NFKB1 con periodontitis. Recimundo. 2022;6(4):398–409.

Karban AS, Okazaki T, Panhuysen CIM, Gallegos T, Potter JJ, Bailey-Wilson JE, et al. Functional annotation of a novel NFKB1 promoter polymorphism that increases risk for ulcerative colitis. Hum Mol Genet [Internet]. 2004 Jan 1 [cited 2022 Oct 7];13(1):35–45. Available from: https://pubmed.ncbi.nlm.nih.gov/14613970/

Sha WC, Liou HC, Tuomanen EI, Baltimore D. Targeted disruption of the p50 subunit of NF-kappa B leads to multifocal defects in immune responses. Cell [Internet]. 1995 Jan 27 [cited 2022 Oct 7];80(2):321–30. Available from: https://pubmed.ncbi.nlm.nih.gov/7834752/

Adamzik M, Schäfer S, Frey UH, Becker A, Kreuzer M, Winning S, et al. after Lipopolysaccharide Stimulation and Is Associated with Increased Mortality in Sepsis. Anesthesiology. 2013;118(1):123–33.

Jurdziński KT, Potempa J, Grabiec AM. Epigenetic regulation of inflammation in periodontitis: cellular mechanisms and therapeutic potential. Clin Epigenetics [Internet]. 2020;12(1):1–18. Available from: https://doi.org/10.1186/s13148-020-00982-7

Munegowda AM, Hu J. Transient blocking of NK cell function withsmall molecule inhibitors for helperdependant adenoviral vector-mediatedgene delivery. Cell Biosci. 2015;5(29).

Luo Y, Peng X, Duan D, Liu C, Xu X, Zhou X. Epigenetic Regulations in the Pathogenesis of Periodontitis. Curr Stem Cell Res Ther. 2017 Jul 19;13(2).

Lei F, Li M, Lin T, Zhou H, Wang F SX. Treatment of inflammatory bone loss in periodontitis by stem cell-derived exosomes. Acta Biomater. 2022;5(141):333–43.

Suzuki S, Yamada S. Epigenetics in susceptibility, progression, and diagnosis of periodontitis. Jpn Dent Sci Rev [Internet]. 2022;58:183–92. Available from: https://doi.org/10.1016/j.jdsr.2022.06.001

Asad F, Garaicoa-pazmiño C, Dahlin C, Larsson L. Expression of MicroRNAs in Periodontal and Peri-Implant Diseases : A Systematic Review and Meta-Analysis. Int J Mol Sci. 2020;21(11):4147.

Yoneda T, Tomofuji T, Ekuni D, Azuma T, Maruyama T, Fujimori K, et al. Serum microRNAs and chronic periodontitis: A case-control study. Arch Oral Biol [Internet]. 2019;101(January):57–63. Available from: https://doi.org/10.1016/j.archoralbio.2019.03.009

Fawzy El-Sayed K, Graetz C, Köhnlein T, Mekhemar M, Dörfer C. Effect of total sonicated aggregatibacter actinomycetemcomitans fragments on gingival stem/progenitor cells. Med Oral Patol Oral y Cir Bucal. 2018;23(5):e569–78.

Bhindi R, Fahmy RG, Lowe HC, Chesterman CN, Dass CR, Cairns MJ, et al. Brothers in arms: DNA enzymes, short interfering RNA, and the emerging wave of small-molecule nucleic acid-based gene-silencing strategies. Am J Pathol [Internet]. 2007 Aug 23 [cited 2022 Oct 6];171(4):1079–88. Available from: https://europepmc.org/articles/PMC1988859

Tomita T, Takano H, Tomita N, Morishita R, Kaneko M, Shi K, et al. Transcription factor decoy for NFkappaB inhibits cytokine and adhesion molecule expressions in synovial cells derived from rheumatoid arthritis. Rheumatology (Oxford) [Internet]. 2000 [cited 2022 Oct 6];39(7):749–57. Available from: https://pubmed.ncbi.nlm.nih.gov/10908694/

Published

2024-07-11

Issue

Section

Original

How to Cite

1.
María Eugenia Paredes Herrera MEPH, Miranda Rosero OD, Tobar Peñaherrera AN, Salazar Durán M de los Ángeles. Epigenetics in Periodontics. Interamerican Journal of Health Sciences [Internet]. 2024 Jul. 11 [cited 2025 Jan. 18];4:114. Available from: https://ijhsc.uai.edu.ar/index.php/ijhsc/article/view/114